
Lin Kernighan Heuristic
 Isabelle May

CPSC 450
Fall 2024

Summary
This project focuses on solving the Traveling Salesman Problem

(TSP) using the Lin-Kernighan heuristic, a dynamic k-opt

algorithm, and comparing it to the Bellman-Held-Karp Algorithm.

Each algorithm was implemented in Java, utilizing graph-based

data structures to represent nodes and edges. Performance tests

included correctness validation on large graphs, comparisons of

time efficiency, and testing on graphs of up to 2000 nodes. The

Lin-Kernighan algorithm consistently outperformed the Bellman-

Held-Karp Algorithm, achieving near-optimal solutions (within

1% of the optimal tour cost) and scaling significantly more

efficiently for larger datasets.

1 ALGORITHM SELECTED

1.1 Problem and Algorithm
The problem addressed in this work is the Traveling Salesman

Problem (TSP), a classic NP-hard optimization problem where the

goal is to determine the shortest possible tour that visits every

vertex in a graph exactly once and before returning to the starting

point. The algorithm explored is the Lin-Kernighan heuristic, a

dynamic k-opt algorithm. This heuristic iteratively improves an

initial tour by breaking and reconnecting k edges to achieve

shorter routes. The method dynamically determines the value of k

based on the potential gain from further optimization, making it

more adaptive in comparison to fixed-k algorithms, brute-force,

and dynamic programming algorithms.

1.2 Sources
This project relied on three main sources. Lin and Kernighan

(1973) introduced the dynamic k-opt method, which formed the

foundation for implementing the Lin-Kernighan heuristic in my

work [1]. Idzenga (2023) provided a comprehensive overview and

a detailed analysis of TSP algorithms, offering valuable context

for evaluating the performance of the Lin-Kernighan heuristic

against other methods [2]. Additionally, Keld Helsgaun's LKH-1.3

documentation gives an in-depth explanation of the algorithm's

structure and decision-making process, aiding in refining the

implementation used in this project [3].

Additionally, Hutchinson (2016) and Nguyen provided detailed

explanations of the Bellman-Held-Karp algorithm, emphasizing

its dynamic programming approach and its role as a benchmark

for solving TSP instances [5][6]. Further insights on both

algorithms were gained from Chen, Yang, and Li (2022), which

explores the application of deep reinforcement learning to the

TSP, introducing a modern approach that contrasts with

traditional heuristic and exact methods [4]. Together, these

sources informed both the theoretical understanding and practical

implementations that shaped this project.

1.3 Lin Kernighan Pseudocode [2]:
Algorithm 1 Main loop

1: for t1 in vertices do

2: for t2 in neighbors of t1 do

3: broken ← [(t1, t2)]

4: added ← []

5: G∗ ← 0

6: k ← 0

7: if AddingEdge(broken, added, G∗, k) is

"improved" then

8: restart MainLoop

9: end if

10: end for

11: end for

Algorithm 2 AddingEdge(broken, added, G∗, k)

1: i ← i + 1

2: t2i ← last vertex in t

3: for t2i+1 in vertices do

4: if t2i+1 was already chosen or t2i+1 is in neighbors of t2i then

5: continue

6: end if

7: yi ← (t2i, t2i+1)

8: added.append(yi)

9: Calculate Gi

10: if Gi < G∗ and G∗ > 0 then

11: RelinkTour

12: return "improved"

13: else if Gi < G∗ and G∗ = 0 then

14: added.remove(yi)

15: return "not improved"

16: end if

17:

18: if BreakingEdge(broken, added, G∗, k) is "improved" then

19: return "improved"

20: else if BreakingEdge(broken, added, G∗, k) is "no suitable

edge" then

21: added.remove(yi)

22: continue

23: else if BreakingEdge(broken, added, G∗, k) is "not

improved" then

24: added.remove(yi)

25: if backtracking is not allowed or max number of

neighbors are considered then

26: return "not improved"

27: end if

28: end if

29: end for

30: return "not improved"

Algorithm 3 BreakingEdge(broken, added, G∗, k)

1: t2i+1 ← last vertex in t

2: xi = (t2i+1, t2i+2) ← suitable edge to break

3: if no suitable edge to break then

4: return "no suitable edge"

5: end if

6: broken.append(xi)

7: if Gi−1 + |xi| − |(t2i+2, t1)| > G∗ then

8: if greedy then

9: RelinkTour

10: return "improved"

11: end if

12: G∗ ← Gi−1 + |xi| − |(t2i+2, t1)|

13: k ← i

14: end if

15:

16: if max depth is reached then

17: if G∗ > 0 then

18: RelinkTour

19: return "improved"

20: else if G∗ = 0 then

21: broken.remove(xi)

22: return "not improved"

23: end if

24: end if

25:

26: if AddingEdge(broken, added, G∗, k) is "improved" then

27: return "improved"

28: else if AddingEdge(broken, added, G∗, k) is "not improved"

then

29: broken.remove(xi)

30: return "not improved"

31: end if

1.4 Bellman-Held-Karp Pseudocode [6]:
1: function BellmanHeldKarp(G, V)

2: Initialize distance matrix dist[V][V] for all pairs of vertices

3: for each subset of vertices S ⊆ V do

4: for each vertex v ∈ S do

5: dist[S][v] ← minimum cost to reach vertex v from the

subset S

6: end for

7: end for

8: for each subset of vertices S ⊆ V do

9: for each vertex v ∈ S do

10: for each vertex u ∈ S \ {v} do

11: dist[S][v] ← min(dist[S][v], dist[S \ {v}][u] + cost(u,

v))

12: end for

13: end for

14: end for

15: return dist[V][1] // Optimal solution: the shortest cycle

distance

16: end function

1.5 Time Complexity
The Lin Kernighan Algorithm begins with an initialization step,

where the initial random tour is constructed, taking O(V) time,

where V represents the number of vertices. The main loop of the

algorithm involves evaluating candidate edges for each vertex,

performing dynamic k-opt moves, and optimizing through edge-

breaking. The complexity per restart in this phase is O(V²·C·D),

where C is the number of candidate edges and D is the recursion

depth. Assuming constant values for C and D, this complexity

simplifies to O(V²). The recursive k-opt step explores all edges at

the current depth, with a worst-case complexity of O(V²·D).

Finally, the edge-breaking optimization step evaluates all edges,

contributing O(V²) to the overall complexity [2].

Overall Complexity: O (V2· (C·D+1)) → O(V2)

The Bellman-Held-Karp algorithm starts with an initialization

step, where the initial distance matrix is constructed, taking O(V²)

time, where V is the number of vertices. The core of the algorithm

involves dynamic programming, where subproblems are solved by

recursively finding the shortest paths between subsets of vertices.

In each recursive step, the algorithm evaluates all transitions

between subsets, leading to a complexity of O(V²·2v), as it needs

to compute distances for every subset of vertices and for each

potential transition. The complexity is dominated by the number

of subsets (2v) and the number of vertices (V), making the

Bellman-Held-Karp algorithm exponential in time complexity. [5]

Overall time complexity: O(V²·2v) → O(2v)

2 IMPLEMENTATION

2.1 Setup
In my implementation of the Lin-Kernighan algorithm, I used

Java as the programming language. The core data structures I

utilized were ArrayLists, HashSets, and PriorityQueues, due to

their ability to efficiently manage dynamic sets of objects such as

tours, edges, and candidate edges. Overall, my implementation

utilizes a dynamic and iterative refinement strategy.

Starting with a randomized tour, the algorithm progressively

improves the solution by exploring local optimizations through k-

opt moves. Each move involves breaking and reconnecting edges

with the main goal of reducing the total tour cost. It uses a

dynamic candidate edge selection process, utilizing a priority

queue to identify promising edges based on weight. To avoid local

minima, the algorithm incorporates global restarts and reinitializes

the tour multiple times.

Recursive methods are then employed to explore deeper k-opt

optimizations, with safeguards like gain thresholds and maximum

recursion depths to balance performance and computational cost.

Additionally, the algorithm includes edge-breaking optimization

to refine solutions further. Combining iterative refinement,

randomization, and systematic edge evaluations, I aim to balance

computational efficiency with solution quality in my

implementation to efficiently solve TSP instances, even if quite

complex.

2.2 Deviations From Pseudocode
My implementation deviated from the pseudocode in several

ways, particularly in terms of the structure and complexity of the

recursive optimization process. In the pseudocode, the focus is on

iteratively selecting candidate edges and applying k-opt moves,

with a clear termination condition based on improvement

thresholds or a maximum number of allowed moves. My final

algorithm, however, introduces additional complexity with

multiple layers of recursion, dynamic edge breaking, and

optimization using priority queues for candidate selection.

Furthermore, the pseudocode contains a simpler approach to tour

improvement, while my algorithm incorporates more advanced

techniques like caching edge weights and using sets for edge

management, making it more thorough and slightly more

computationally expensive.

I also added specific termination conditions like recursion depth

limits and gain thresholds for the dynamic k-opt search, as well as

a backtracking mechanism with edge reversals for increased

efficiency and better exploration of potential solutions.

Additionally, I implemented edge-breaking optimizations and tour

cost calculations to handle invalid or overflow edge weights.

2.3 External Libraries
The only external library used was the Java Collections

Framework to handle dynamic data structures such as lists, sets,

and queues.

2.4 Challenges
One of the most challenging aspects of the implementation was

handling the recursive exploration of k-opt moves. This required

careful management of recursion depth and edge reversals to

prevent the algorithm from diving too deep into unpromising

search paths while still exploring enough potential moves.

Additionally, edge handling posed a significant challenge, as edge

weights could potentially result in overflow or invalid values,

such as NaN or infinite weights. To address this, I added error

checks and validation in methods like calculateTourCost and

calculateGain to ensure the algorithm wouldn't fail due to invalid

data. Finally, performance optimization was necessary due to the

growing complexity of the algorithm as the graph size increases.

Optimizing the search for candidate edges and managing

recursion depth were key strategies in mitigating performance

concerns and improving the overall efficiency of the solution.

2.5 Unit Test Cases

2.5.1 Graph Data and Unit Test Setup
To ensure the correctness of the Lin-Kernighan algorithm

implementation, 15 test cases were developed, each targeting

specific aspects of the algorithm's behavior and performance.

Below is a general overview of the test cases:

• Single Node Graph: Used to test the edge case of

minimal input.

• Small Complete Graph: A 4-node complete graph to

assess the behavior with multiple edges.

• Disconnected Graph: A graph with isolated components

to test handling of disconnected graphs.

• Graph with Identical Weights: Used to evaluate the

algorithm's behavior when all edges have the same

weight.

• Graph with Negative Weights: Used to evaluate the

algorithm's behavior when all edges have negative

weights.

• Graph with Zero Weights: Used to evaluate the

algorithm's behavior when all edges have a weight of 0.

• Moderate Size Graph: A 20-node cycle to simulate a

more realistic, moderately sized graph.

• Large Graphs: Up to 100 nodes, testing how the

algorithm scales with increasing size.

• Correctness: Verified that the algorithm computes the

correct tour and compares it to a brute-force solution for

small graphs.

• Performance: Evaluated the execution time for both

small and large graphs. A special test compared the Lin-

Kernighan algorithm's time against a Bellman-Held-

Karp Algorithm to measure efficiency.

Table 1: Overview of Test Cases

Test Case Purpose Graph

Type

Expected

Outcome

Basic

Graphs
Tests for graphs

with small,

simple

configurations

(1-2 nodes)

Single

node, two

nodes

Correct

vertex/edge

count, edge

presence

validation

Graph

Structure

(Complete

/Disconne

cted)

Tests for

complete and

disconnected

graphs

Complete,

disconnect

ed

Edge count

matches

graph

structure,

disconnecte

d vertices

have no

edges

Edge

Weight

Variations

Tests for graphs

with varying

edge weights,

including

negative, zero,

and identical

weights

Varying

weights

Correct

edge

weights

applied,

results

consistent

for

differing

weights

Moderate

to Large

Graphs

Tests larger

graphs with up

to 50 vertices,

ensuring

scalability

Moderate

(20 nodes)

to large

(50 nodes)

Correct

vertex/edge

count,

results

consistent

with graph

structure

Path

Accuracy:

Optimal

vs. Lin-

Kernighan

Tests for path

correctness,

comparing Lin-

Kernighan

algorithm with

brute force

solution

TSP graphs

(10-15

nodes)

Lin-

Kernighan’

s result

within

tolerance of

the optimal

solution

Time

Efficiency

Tests large

graphs to assess

time efficiency

and algorithm

performance

Large

graphs (100

nodes)

Algorithm

completes

within time

limits,

results

consistent

with

expected

efficiency

2.5.2 Scaling the Graph Data:
• For the large graphs I ensured that the graph was fully

connected with edges added to form a cyclic structure.

• Edge weights were assigned using random values or

fixed values to simulate different scenarios, such as

graphs with identical, negative, or zero weights.

3 PERFORMANCE TESTS

3.1 Performance Testing Setup
To evaluate the performance of the Lin-Kernighan algorithm, I

created a test using graphs of varying sizes and complexities. This

test involved creating both sparse and dense graphs, ranging from

200 to 2000 vertices. The second performance test compares the

Lin-Kernighan and Bellman-Held-Karp algorithms on various

sparse and dense graphs, ranging from 1 to 20 vertices, with their

runtimes measured in milliseconds.

3.2 Graph Data and Test Setup
The performance tests aim to evaluate the performance of two

algorithms—Lin-Kernighan and Bellman-Held-Karp—on both

sparse and dense graphs. The program creates 2 different graphs

with varying vertex counts, ranging from 1 to 2000, and uses two

types of graph structures: sparse adjacency lists, where nodes are

sparsely connected, and dense adjacency lists, where every pair of

nodes is connected. Both graphs label edges with incremental

weights to ensure consistency.

The first evaluation graph is set up to test the Lin-Kernighan

algorithm on both sparse and dense adjacency lists ranging from

200-2000 vertices. The second evaluation graph is set up to test

both algorithms by measuring their execution time and plotting

them next to each other. This test is built to test sparse adjacency

lists ranging from 1-20 vertices. Though 20 vertices might seem

low compared to the first test, it is intentionally chosen to account

for the computational complexity of the Bellman-Held-Karp

algorithm, which becomes impractical for larger graphs due to its

exponential time complexity [5][6]. Limiting the vertex count to

20 ensures the evaluation remains feasible while still providing

meaningful insights into the algorithm's performance.

For both graphs, results are logged for each graph configuration

and visualized using charts generated by the JFreeChart library.

The program then saves the performance charts as PNG files for

further analysis.

3.2.1 Graph Structures
Two primary types of graph structures are used to test the

algorithms: sparse and dense adjacency lists. Sparse graphs are

created by connecting vertices with a limited number of edges,

ensuring a low edge density, while dense graphs involve

connecting every possible pair of vertices, resulting in a high edge

density. These structures are used to assess the performance of the

Lin-Kernighan to evaluate its computational efficiency on varying

levels of graph complexity. In contrast, the Bellman-Held-Karp

algorithm is evaluated only on sparse graphs due to its exponential

time complexity, which makes it infeasible for dense graphs with

larger vertex counts.

3.3 Environment
Hardware: The tests were executed on a machine with the

following specifications:

Processor: Intel i7-9700K

RAM: 16 GB DDR4

Disk: SSD storage

Operating System: Windows 10 (64-bit)

Java Version: OpenJDK 11

3.4 Building and Running the Tests

3.4.1 Project Setup:
• The tests were implemented using JUnit 5 for unit

testing, ensuring the correctness of the algorithm.

• Maven was used to manage dependencies. The required

dependencies were:

o JUnit 5

o Java Collections API

o Custom classes for the graph representation

(Graph, AdjList, EdgeLabeling)

3.4.2 Instructions:
1. Clone the Repository:

git clone https://github.com/Gonzaga-CPSC-450-Fall-

2024/final-project-ifmay.git

2. Run the Unit Tests: mvn test

3. Run the Performance Evaluation Tests:

mvn compile exec:java

4 EVALUATION RESULTS
This section analyzes the tests results from both the conducted

performance tests and the unit tests. The results highlight the Lin-

Kernighan heuristic's efficiency, versatility, and accuracy in

comparison to the Bellman-Held-Karp algorithm. Further, the

tests demonstrate the heuristic's ability to find near-optimal

solutions significantly faster than exact methods, like the

Bellman-Held-Karp algorithm/

4.1.1 Performance Test Results:
Figure 1 depicts Lin-Kernighan algorithm's performance across

various sized sparse and dense graphs ranging from 200-2000

vertices. Both sparse and dense graphs performed similarly with

an increasing computational cost with the number of vertices. For

instance, both sparse and dense graphs with 2000 vertices require

approximately 4500 milliseconds to run, indicating that the

difference in processing time between the two graph types is not

significant at this scale. This consistency highlights the

algorithm’s computational efficiency and scalability in handling

varying graph densities without substantial deviations in

execution time. These results suggest that the Lin-Kernighan

heuristic effectively maintains its efficiency regardless of edge

density, making it a reliable choice for solving TSP on both sparse

and dense graphs within the tested range.

Figure 2 illustrates the performance of a Bellman-Held-Karp

algorithm and the Lin-Kernighan Algorithm on sparse graphs. For

smaller-scale TSP instances, both algorithms exhibit similar

performance, with execution times remaining relatively low.

However, as the number of vertices increases for the Bellman-

Held-Karp algorithm, the time required for the algorithm to find

the optimal solution grows exponentially. This evaluation

https://github.com/Gonzaga-CPSC-450-Fall-2024/final-project-ifmay.git
https://github.com/Gonzaga-CPSC-450-Fall-2024/final-project-ifmay.git

suggests that the Bellman-Held-Karp algorithm is impractical for

larger-scale instances due to its exponential performance

deterioration.

 In contrast, the Lin-Kernighan algorithm maintains a more stable

performance profile, providing good approximate solutions in a

reasonable amount of time. This growth demonstrates the

computational challenge of solving large-scale TSP instances

using exact methods. As the number of vertices increases for the

Lin-Kernighan Algorithm, the time required for the algorithm to

find a near-optimal solution grows polynomially, making it a

practical choice for large-scale TSP instances.

The Lin-Kernighan Algorithm handles larger sizes efficiently

(up to 387,700% [1ms vs. 3878ms] for 20 vertex graphs) but since

it is a heuristic, it may not always find the precise optimal

solution. Additional testing was performed in the unit tests to

ensure that accuracy was not sacrificed for efficiency in my

implementation.

 Figure 1: Lin-Kernighan Performance Graph

 Figure 2: Algorithm Performance Comparison Graph

4.2 Unit Test Results:
The unit tests provide convincing evidence of the Lin-Kernighan

heuristic's effectiveness in solving the Traveling Salesman

Problem (TSP). The algorithm demonstrates both accuracy and

efficiency across various graph sizes and edge weight

configurations.

4.2.1 Accuracy
The testCorrectnessOnGraph test specifically highlights the

heuristic's ability to find near-optimal solutions. In this test, the

Lin-Kernighan algorithm consistently calculates tour costs within

1% of the optimal solution, often achieving the exact optimal

solution.

4.2.2 Efficiency
The Lin-Kernighan heuristic exhibits polynomial time

complexity, making it significantly more scalable than exact

algorithms. For instance, the testVsExactTimeEfficiency test

demonstrates that for a 15-node graph, the Lin-Kernighan

algorithm completes execution in just 0 milliseconds, while the

Bellman-Held-Karp algorithm requires 42 milliseconds. This

significant performance difference becomes even more

pronounced for larger graphs. The

testTimeEfficiencyForLargeGraph test showcases the heuristic's

ability to handle a 100-node graph in under 34 milliseconds.

4.2.3 Versatility
The unit tests cover a wide range of graph scenarios, including

disconnected graphs (testDisconnectedGraph), graphs with

identical, negative, or zero edge weights

(testGraphWithIdenticalWeights, testGraphWithNegativeWeights,

testGraphWithZeroWeights), and graphs with multiple edges

between nodes (testMultipleEdgesWithVaryingWeights). This

demonstrates the heuristic's functionality and adaptability to

various unique problem instances.

Overall, the unit tests demonstrate Lin-Kernighan’s ability to offer

a practical and efficient solution for the Traveling Salesman

Problem. Its ability to find high-quality solutions in a fraction of

the time required by exact methods, combined with its versatility

in handling various graph structures, proves its value as a tool for

real-world applications.

5 REFLECTION
For this project, I focused on implementing and analyzing the

performance of the Lin-Kernighan heuristic and Bellman-Held-

Karp algorithm on different graph structures and in comparison to

one another. I found the Lin-Kernighan algorithm particularly

interesting because of its iterative nature and how it attempts to

improve upon an initial solution by exploring local optimal

solutions. This ties into class discussions about NP-completeness

and time complexity vs. efficiency tradeoffs.

One of the challenges I faced while designing the Lin-Kernighan

algorithm was optimizing the recursive k-opt approach. The

complexity of the algorithm increases due to the multiple layers of

recursion needed to explore different tour improvements.

Ensuring that the recursion depth was both effective and efficient

required extensive thought, as excessive recursion could quickly

lead to performance deterioration.

Another challenge was Balancing the exploration of potential

edge swaps with the depth limits was crucial for preventing over-

exploration while still achieving meaningful improvements.

Additionally, caching edge weights for efficiency and managing

the multiple restarts of the algorithm presented challenges in

maintaining the best tour across iterations, especially when new

tours were generated through randomization. The difficulty of

fine-tuning parameters, such as the maximum recursion depth,

candidate edge selection, and stopping conditions, added

challenges to the design process, and reinforced the importance of

carefully considering the trade-offs between exploration and

performance for the Lin Kernighan Algorithm.

If I had more time, I would experiment with optimizing the

algorithm further by parallelizing its steps to improve efficiency

for larger datasets. I would also test it on a broader range of

problem instances and explore utilizing machine learning

techniques to predict better edge swaps [6]. Additionally, I would

fine-tune parameters and implement more advanced visualizations

to track the algorithm’s progress and identify areas for further

improvement.

6 RESOURCES
This project relied on foundational research and contemporary

innovations to develop and analyze algorithms for solving the

Traveling Salesman Problem (TSP). Lin and Kernighan's 1973

paper [1] introduced the Lin-Kernighan heuristic, which served as

the theoretical foundation for the algorithm’s design. The edge-

swapping approach detailed in the paper directly influenced the

algorithm's implementation. Idzenga’s 2023 comparative study [2]

provided valuable insights into the performance of various TSP

algorithms, guiding the evaluation phase, and enabling a thorough

comparison with an already established TSP algorithm.

Helsgaun’s documentation [3] offered practical guidance for

implementing my Lin-Kernighan heuristic, focusing on

optimization techniques and common pitfalls, which were

beneficial during testing and debugging. Additionally, Yang’s

IEEE publication [4] introduced deep reinforcement learning

methods for TSP, offering a broader perspective on how AI-

driven approaches compare to traditional heuristics. While this

source did not directly inform my work, it provided me with a

greater appreciation for the potential of machine learning

techniques in solving TSP and expanded my understanding of

alternative approaches to the problem. These resources

collectively informed the development, implementation, and

evaluation of the TSP algorithm.

Hutchinson et al. (2016) [5] and Nguyen [6] provided

comprehensive overviews of the Bellman-Held-Karp algorithm,

detailing its theoretical basis, implementation, and limitations.

These resources were helpful in understanding the computational

constraints of the Bellman-Held-Karp approach, particularly when

evaluating its performance on sparse graphs.

7 REFERENCES
[1] Lin, S., & Kernighan, B. W. (1973). An Effective Heuristic

Algorithm for the Traveling-Salesman Problem. Retrieved from

Princeton University

[2] Idzenga, R. (2023). "A Comparative Study of Algorithms for

Solving the Traveling Salesman Problem". Bachelor's Thesis,

University of Twente. Retrieved from University of Twente.

[3] Keld Helsgaun, "The Lin-Kernighan Heuristic for Solving the

Traveling Salesman Problem", LKH-1.3 Documentation.

Retrieved From Roskilde Universitet.

[4] Chen, X., Yang, L., & Li, Z. (2022). "Deep Reinforcement

Learning for Solving the Traveling Salesman Problem". IEEE

Transactions on Artificial Intelligence. Retrieved from IEEE.

[5] Hutchinson, C., Pyo, J., Zhang, L., & Zhou, J. (2016).

Traveling Salesman Problem and Bellman-Held-Karp Algorithm.

Carnegie Mellon University. Retrieved from Carnegie Mellon

University.

[6] Nguyen, Q. N. Traveling Salesman Problem and Bellman-

Held-Karp Algorithm. Retrieved from Nagoya University.

https://www.cs.princeton.edu/~bwk/btl.mirror/tsp.pdf
https://essay.utwente.nl/96650/1/Idzenga_BA_EEMCS.pdf
http://webhotel4.ruc.dk/~keld/research/LKH/LKH-1.3/DOC/LKH_REPORT.pdf
https://ieeexplore.ieee.org/document/9922660
https://www.math.cmu.edu/users/af1p/Teaching/OR2/Projects/P58/OR2_Paper.pdf
https://www.math.cmu.edu/users/af1p/Teaching/OR2/Projects/P58/OR2_Paper.pdf
https://www.math.nagoya-u.ac.jp/~richard/teaching/s2020/Quang1.pdf

