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Summary 
This project focuses on solving the Traveling Salesman Problem 

(TSP) using the Lin-Kernighan heuristic, a dynamic k-opt 

algorithm, and comparing it to the Bellman-Held-Karp Algorithm. 

Each algorithm was implemented in Java, utilizing graph-based 

data structures to represent nodes and edges. Performance tests 

included correctness validation on large graphs, comparisons of 

time efficiency, and testing on graphs of up to 2000 nodes. The 

Lin-Kernighan algorithm consistently outperformed the Bellman-

Held-Karp Algorithm, achieving near-optimal solutions (within 

1% of the optimal tour cost) and scaling significantly more 

efficiently for larger datasets. 

1 ALGORITHM SELECTED 

1.1 Problem and Algorithm 
The problem addressed in this work is the Traveling Salesman 

Problem (TSP), a classic NP-hard optimization problem where the 

goal is to determine the shortest possible tour that visits every 

vertex in a graph exactly once and before returning to the starting 

point. The algorithm explored is the Lin-Kernighan heuristic, a 

dynamic k-opt algorithm. This heuristic iteratively improves an 

initial tour by breaking and reconnecting k edges to achieve 

shorter routes. The method dynamically determines the value of k 

based on the potential gain from further optimization, making it 

more adaptive in comparison to fixed-k algorithms, brute-force, 

and dynamic programming algorithms. 

1.2 Sources 
This project relied on three main sources. Lin and Kernighan 

(1973) introduced the dynamic k-opt method, which formed the 

foundation for implementing the Lin-Kernighan heuristic in my 

work [1]. Idzenga (2023) provided a comprehensive overview and 

a detailed analysis of TSP algorithms, offering valuable context 

for evaluating the performance of the Lin-Kernighan heuristic 

against other methods [2]. Additionally, Keld Helsgaun's LKH-1.3 

documentation gives an in-depth explanation of the algorithm's 

structure and decision-making process, aiding in refining the 

implementation used in this project [3].  

Additionally, Hutchinson (2016) and Nguyen provided detailed 

explanations of the Bellman-Held-Karp algorithm, emphasizing 

its dynamic programming approach and its role as a benchmark 

for solving TSP instances [5][6]. Further insights on both 

algorithms were gained from Chen, Yang, and Li (2022), which 

explores the application of deep reinforcement learning to the 

TSP, introducing a modern approach that contrasts with 

traditional heuristic and exact methods [4]. Together, these 

sources informed both the theoretical understanding and practical 

implementations that shaped this project. 

 

 

1.3 Lin Kernighan Pseudocode [2]: 
Algorithm 1 Main loop 

1: for t1 in vertices do 

2:  for t2 in neighbors of t1 do 

3:   broken ← [(t1, t2)] 

4:   added ← [] 

5:   G∗ ← 0 

6:   k ← 0 

7:   if AddingEdge(broken, added, G∗, k) is 

"improved" then 

8:   restart MainLoop 

9:           end if 

10:      end for 

11: end for 

 

Algorithm 2 AddingEdge(broken, added, G∗, k) 

1:  i ← i + 1 

2:  t2i ← last vertex in t 

3:  for t2i+1 in vertices do 

4:      if t2i+1 was already chosen or t2i+1 is in neighbors of t2i then 

5:          continue 

6:      end if 

7:      yi ← (t2i, t2i+1) 

8:      added.append(yi) 

9:      Calculate Gi 

10:     if Gi < G∗ and G∗ > 0 then 

11:         RelinkTour 

12:         return "improved" 

13:     else if Gi < G∗ and G∗ = 0 then 

14:         added.remove(yi) 

15:         return "not improved" 

16:     end if 

17:      

18:     if BreakingEdge(broken, added, G∗, k) is "improved" then 

19:         return "improved" 

20:     else if BreakingEdge(broken, added, G∗, k) is "no suitable 

edge" then 

21:         added.remove(yi) 

22:         continue 

23:     else if BreakingEdge(broken, added, G∗, k) is "not 

improved" then 

24:         added.remove(yi) 

25:         if backtracking is not allowed or max number of 

neighbors are considered then 

26:             return "not improved" 

27:         end if 

28:     end if 

29: end for 

30: return "not improved" 

 

Algorithm 3 BreakingEdge(broken, added, G∗, k) 

1:  t2i+1 ← last vertex in t 

2:  xi = (t2i+1, t2i+2) ← suitable edge to break 



3:  if no suitable edge to break then 

4:      return "no suitable edge" 

5:  end if 

6:  broken.append(xi) 

7:  if Gi−1 + |xi| − |(t2i+2, t1)| > G∗ then 

8:      if greedy then  

9:          RelinkTour 

10:         return "improved" 

11:     end if 

12:     G∗ ← Gi−1 + |xi| − |(t2i+2, t1)| 

13:     k ← i 

14: end if 

15: 

16: if max depth is reached then 

17:     if G∗ > 0 then  

18:         RelinkTour 

19:         return "improved" 

20:     else if G∗ = 0 then 

21:         broken.remove(xi) 

22:         return "not improved" 

23:     end if 

24: end if 

25: 

26: if AddingEdge(broken, added, G∗, k) is "improved" then 

27:     return "improved" 

28: else if AddingEdge(broken, added, G∗, k) is "not improved" 

then 

29:     broken.remove(xi) 

30:     return "not improved" 

31: end if 

 

1.4 Bellman-Held-Karp Pseudocode [6]: 
1: function BellmanHeldKarp(G, V) 

2:     Initialize distance matrix dist[V][V] for all pairs of vertices 

3:     for each subset of vertices S ⊆ V do 

4:         for each vertex v ∈ S do 

5:             dist[S][v] ← minimum cost to reach vertex v from the 

subset S 

6:         end for 

7:     end for 

8:     for each subset of vertices S ⊆ V do 

9:         for each vertex v ∈ S do 

10:            for each vertex u ∈ S \ {v} do 

11:                dist[S][v] ← min(dist[S][v], dist[S \ {v}][u] + cost(u, 

v)) 

12:            end for 

13:        end for 

14:    end for 

15:    return dist[V][1] // Optimal solution: the shortest cycle 

distance 

16: end function 

1.5 Time Complexity 
The Lin Kernighan Algorithm begins with an initialization step, 

where the initial random tour is constructed, taking O(V) time, 

where V represents the number of vertices. The main loop of the 

algorithm involves evaluating candidate edges for each vertex, 

performing dynamic k-opt moves, and optimizing through edge-

breaking. The complexity per restart in this phase is O(V²·C·D), 

where C is the number of candidate edges and D is the recursion 

depth. Assuming constant values for C and D, this complexity 

simplifies to O(V²). The recursive k-opt step explores all edges at 

the current depth, with a worst-case complexity of O(V²·D). 

Finally, the edge-breaking optimization step evaluates all edges, 

contributing O(V²) to the overall complexity [2]. 

Overall Complexity: O (V2· (C·D+1)) → O(V2) 

The Bellman-Held-Karp algorithm starts with an initialization 

step, where the initial distance matrix is constructed, taking O(V²) 

time, where V is the number of vertices. The core of the algorithm 

involves dynamic programming, where subproblems are solved by 

recursively finding the shortest paths between subsets of vertices. 

In each recursive step, the algorithm evaluates all transitions 

between subsets, leading to a complexity of O(V²·2v), as it needs 

to compute distances for every subset of vertices and for each 

potential transition. The complexity is dominated by the number 

of subsets (2v) and the number of vertices (V), making the 

Bellman-Held-Karp algorithm exponential in time complexity. [5] 

Overall time complexity: O(V²·2v) → O(2v) 

2 IMPLEMENTATION 

2.1 Setup 
In my implementation of the Lin-Kernighan algorithm, I used 

Java as the programming language. The core data structures I 

utilized were ArrayLists, HashSets, and PriorityQueues, due to 

their ability to efficiently manage dynamic sets of objects such as 

tours, edges, and candidate edges. Overall, my implementation 

utilizes a dynamic and iterative refinement strategy.  

Starting with a randomized tour, the algorithm progressively 

improves the solution by exploring local optimizations through k-

opt moves. Each move involves breaking and reconnecting edges 

with the main goal of reducing the total tour cost. It uses a 

dynamic candidate edge selection process, utilizing a priority 

queue to identify promising edges based on weight. To avoid local 

minima, the algorithm incorporates global restarts and reinitializes 

the tour multiple times.  

Recursive methods are then employed to explore deeper k-opt 

optimizations, with safeguards like gain thresholds and maximum 

recursion depths to balance performance and computational cost. 

Additionally, the algorithm includes edge-breaking optimization 

to refine solutions further. Combining iterative refinement, 

randomization, and systematic edge evaluations, I aim to balance 

computational efficiency with solution quality in my 

implementation to efficiently solve TSP instances, even if quite 

complex. 

2.2 Deviations From Pseudocode 
My implementation deviated from the pseudocode in several 

ways, particularly in terms of the structure and complexity of the 

recursive optimization process. In the pseudocode, the focus is on 

iteratively selecting candidate edges and applying k-opt moves, 

with a clear termination condition based on improvement 

thresholds or a maximum number of allowed moves. My final 

algorithm, however, introduces additional complexity with 

multiple layers of recursion, dynamic edge breaking, and 

optimization using priority queues for candidate selection. 

Furthermore, the pseudocode contains a simpler approach to tour 

improvement, while my algorithm incorporates more advanced 

techniques like caching edge weights and using sets for edge 



management, making it more thorough and slightly more 

computationally expensive.  

I also added specific termination conditions like recursion depth 

limits and gain thresholds for the dynamic k-opt search, as well as 

a backtracking mechanism with edge reversals for increased 

efficiency and better exploration of potential solutions. 

Additionally, I implemented edge-breaking optimizations and tour 

cost calculations to handle invalid or overflow edge weights. 

2.3 External Libraries 
The only external library used was the Java Collections 

Framework to handle dynamic data structures such as lists, sets, 

and queues. 

2.4 Challenges 
One of the most challenging aspects of the implementation was 

handling the recursive exploration of k-opt moves. This required 

careful management of recursion depth and edge reversals to 

prevent the algorithm from diving too deep into unpromising 

search paths while still exploring enough potential moves. 

Additionally, edge handling posed a significant challenge, as edge 

weights could potentially result in overflow or invalid values, 

such as NaN or infinite weights. To address this, I added error 

checks and validation in methods like calculateTourCost and 

calculateGain to ensure the algorithm wouldn't fail due to invalid 

data. Finally, performance optimization was necessary due to the 

growing complexity of the algorithm as the graph size increases. 

Optimizing the search for candidate edges and managing 

recursion depth were key strategies in mitigating performance 

concerns and improving the overall efficiency of the solution. 

2.5 Unit Test Cases 

2.5.1 Graph Data and Unit Test Setup 
To ensure the correctness of the Lin-Kernighan algorithm 

implementation, 15 test cases were developed, each targeting 

specific aspects of the algorithm's behavior and performance. 

Below is a general overview of the test cases: 

• Single Node Graph: Used to test the edge case of 

minimal input. 

• Small Complete Graph: A 4-node complete graph to 

assess the behavior with multiple edges. 

• Disconnected Graph: A graph with isolated components 

to test handling of disconnected graphs. 

• Graph with Identical Weights: Used to evaluate the 

algorithm's behavior when all edges have the same 

weight. 

• Graph with Negative Weights: Used to evaluate the 

algorithm's behavior when all edges have negative 

weights. 

• Graph with Zero Weights: Used to evaluate the 

algorithm's behavior when all edges have a weight of 0. 

• Moderate Size Graph: A 20-node cycle to simulate a 

more realistic, moderately sized graph. 

• Large Graphs: Up to 100 nodes, testing how the 

algorithm scales with increasing size. 

• Correctness: Verified that the algorithm computes the 

correct tour and compares it to a brute-force solution for 

small graphs. 

• Performance: Evaluated the execution time for both 

small and large graphs. A special test compared the Lin-

Kernighan algorithm's time against a Bellman-Held-

Karp Algorithm to measure efficiency. 

Table 1: Overview of Test Cases 

Test Case Purpose Graph 

Type 

Expected 

Outcome 

Basic 

Graphs  
Tests for graphs 

with small, 

simple 

configurations 

(1-2 nodes)

  

 

Single 

node, two 

nodes  

 

Correct 

vertex/edge 

count, edge 

presence 

validation 

Graph 

Structure 

(Complete

/Disconne

cted)  

Tests for 

complete and 

disconnected 

graphs  

 

Complete, 

disconnect

ed  

 

Edge count 

matches 

graph 

structure, 

disconnecte

d vertices 

have no 

edges  

Edge 

Weight 

Variations 

Tests for graphs 

with varying 

edge weights, 

including 

negative, zero, 

and identical 

weights  

 

Varying 

weights  

Correct 

edge 

weights 

applied, 

results 

consistent 

for 

differing 

weights  

Moderate 

to Large 

Graphs  

Tests larger 

graphs with up 

to 50 vertices, 

ensuring 

scalability

  

 

Moderate 

(20 nodes) 

to large 

(50 nodes) 

 

Correct 

vertex/edge 

count, 

results 

consistent 

with graph 

structure  

Path 

Accuracy: 

Optimal 

vs. Lin-

Kernighan

  

Tests for path 

correctness, 

comparing Lin-

Kernighan 

algorithm with 

brute force 

solution  

 

TSP graphs 

(10-15 

nodes) 

Lin-

Kernighan’

s result 

within 

tolerance of 

the optimal 

solution  

Time 

Efficiency

  

Tests large 

graphs to assess 

time efficiency 

and algorithm 

performance

  

 

Large 

graphs (100 

nodes) 

Algorithm 

completes 

within time 

limits, 

results 

consistent 

with 

expected 

efficiency 

 



2.5.2 Scaling the Graph Data: 
• For the large graphs I ensured that the graph was fully 

connected with edges added to form a cyclic structure. 

• Edge weights were assigned using random values or 

fixed values to simulate different scenarios, such as 

graphs with identical, negative, or zero weights. 

3 PERFORMANCE TESTS 

3.1 Performance Testing Setup 
To evaluate the performance of the Lin-Kernighan algorithm, I 

created a test using graphs of varying sizes and complexities. This 

test involved creating both sparse and dense graphs, ranging from 

200 to 2000 vertices. The second performance test compares the 

Lin-Kernighan and Bellman-Held-Karp algorithms on various 

sparse and dense graphs, ranging from 1 to 20 vertices, with their 

runtimes measured in milliseconds. 

3.2 Graph Data and Test Setup 
The performance tests aim to evaluate the performance of two 

algorithms—Lin-Kernighan and Bellman-Held-Karp—on both 

sparse and dense graphs. The program creates 2 different graphs 

with varying vertex counts, ranging from 1 to 2000, and uses two 

types of graph structures: sparse adjacency lists, where nodes are 

sparsely connected, and dense adjacency lists, where every pair of 

nodes is connected. Both graphs label edges with incremental 

weights to ensure consistency.  

The first evaluation graph is set up to test the Lin-Kernighan 

algorithm on both sparse and dense adjacency lists ranging from 

200-2000 vertices. The second evaluation graph is set up to test 

both algorithms by measuring their execution time and plotting 

them next to each other. This test is built to test sparse adjacency 

lists ranging from 1-20 vertices. Though 20 vertices might seem 

low compared to the first test, it is intentionally chosen to account 

for the computational complexity of the Bellman-Held-Karp 

algorithm, which becomes impractical for larger graphs due to its 

exponential time complexity [5][6]. Limiting the vertex count to 

20 ensures the evaluation remains feasible while still providing 

meaningful insights into the algorithm's performance.  

For both graphs, results are logged for each graph configuration 

and visualized using charts generated by the JFreeChart library. 

The program then saves the performance charts as PNG files for 

further analysis. 

3.2.1 Graph Structures 
Two primary types of graph structures are used to test the 

algorithms: sparse and dense adjacency lists. Sparse graphs are 

created by connecting vertices with a limited number of edges, 

ensuring a low edge density, while dense graphs involve 

connecting every possible pair of vertices, resulting in a high edge 

density. These structures are used to assess the performance of the 

Lin-Kernighan to evaluate its computational efficiency on varying 

levels of graph complexity. In contrast, the Bellman-Held-Karp 

algorithm is evaluated only on sparse graphs due to its exponential 

time complexity, which makes it infeasible for dense graphs with 

larger vertex counts. 

 

 

3.3 Environment  
Hardware: The tests were executed on a machine with the 

following specifications: 

Processor: Intel i7-9700K 

RAM: 16 GB DDR4 

Disk: SSD storage 

Operating System: Windows 10 (64-bit) 

Java Version: OpenJDK 11 

3.4 Building and Running the Tests 

3.4.1 Project Setup: 
• The tests were implemented using JUnit 5 for unit 

testing, ensuring the correctness of the algorithm. 

• Maven was used to manage dependencies. The required 

dependencies were: 

o JUnit 5 

o Java Collections API 

o Custom classes for the graph representation 

(Graph, AdjList, EdgeLabeling) 

3.4.2 Instructions: 
1. Clone the Repository:  

git clone https://github.com/Gonzaga-CPSC-450-Fall-

2024/final-project-ifmay.git 

2. Run the Unit Tests: mvn test 

3. Run the Performance Evaluation Tests:  

mvn compile exec:java 

4 EVALUATION RESULTS 
This section analyzes the tests results from both the conducted 

performance tests and the unit tests. The results highlight the Lin-

Kernighan heuristic's efficiency, versatility, and accuracy in 

comparison to the Bellman-Held-Karp algorithm. Further, the 

tests demonstrate the heuristic's ability to find near-optimal 

solutions significantly faster than exact methods, like the 

Bellman-Held-Karp algorithm/ 

4.1.1 Performance Test Results:  
Figure 1 depicts Lin-Kernighan algorithm's performance across 

various sized sparse and dense graphs ranging from 200-2000 

vertices. Both sparse and dense graphs performed similarly with 

an increasing computational cost with the number of vertices. For 

instance, both sparse and dense graphs with 2000 vertices require 

approximately 4500 milliseconds to run, indicating that the 

difference in processing time between the two graph types is not 

significant at this scale. This consistency highlights the 

algorithm’s computational efficiency and scalability in handling 

varying graph densities without substantial deviations in 

execution time. These results suggest that the Lin-Kernighan 

heuristic effectively maintains its efficiency regardless of edge 

density, making it a reliable choice for solving TSP on both sparse 

and dense graphs within the tested range. 

Figure 2 illustrates the performance of a Bellman-Held-Karp 

algorithm and the Lin-Kernighan Algorithm on sparse graphs. For 

smaller-scale TSP instances, both algorithms exhibit similar 

performance, with execution times remaining relatively low. 

However, as the number of vertices increases for the Bellman-

Held-Karp algorithm, the time required for the algorithm to find 

the optimal solution grows exponentially. This evaluation 

https://github.com/Gonzaga-CPSC-450-Fall-2024/final-project-ifmay.git
https://github.com/Gonzaga-CPSC-450-Fall-2024/final-project-ifmay.git


suggests that the Bellman-Held-Karp algorithm is impractical for 

larger-scale instances due to its exponential performance 

deterioration. 

 In contrast, the Lin-Kernighan algorithm maintains a more stable 

performance profile, providing good approximate solutions in a 

reasonable amount of time. This growth demonstrates the 

computational challenge of solving large-scale TSP instances 

using exact methods. As the number of vertices increases for the 

Lin-Kernighan Algorithm, the time required for the algorithm to 

find a near-optimal solution grows polynomially, making it a 

practical choice for large-scale TSP instances.  

The Lin-Kernighan Algorithm handles larger sizes efficiently 

(up to 387,700% [1ms vs. 3878ms] for 20 vertex graphs) but since 

it is a heuristic, it may not always find the precise optimal 

solution. Additional testing was performed in the unit tests to 

ensure that accuracy was not sacrificed for efficiency in my 

implementation.  

              Figure 1: Lin-Kernighan Performance Graph 

 

 

         Figure 2: Algorithm Performance Comparison Graph 

4.2 Unit Test Results:  
The unit tests provide convincing evidence of the Lin-Kernighan 

heuristic's effectiveness in solving the Traveling Salesman 

Problem (TSP). The algorithm demonstrates both accuracy and 

efficiency across various graph sizes and edge weight 

configurations. 

4.2.1 Accuracy 
The testCorrectnessOnGraph test specifically highlights the 

heuristic's ability to find near-optimal solutions. In this test, the 

Lin-Kernighan algorithm consistently calculates tour costs within 

1% of the optimal solution, often achieving the exact optimal 

solution. 

4.2.2 Efficiency  
The Lin-Kernighan heuristic exhibits polynomial time 

complexity, making it significantly more scalable than exact 

algorithms. For instance, the testVsExactTimeEfficiency test 

demonstrates that for a 15-node graph, the Lin-Kernighan 

algorithm completes execution in just 0 milliseconds, while the 

Bellman-Held-Karp algorithm requires 42 milliseconds. This 

significant performance difference becomes even more 

pronounced for larger graphs. The 

testTimeEfficiencyForLargeGraph test showcases the heuristic's 

ability to handle a 100-node graph in under 34 milliseconds. 

4.2.3 Versatility  
The unit tests cover a wide range of graph scenarios, including 

disconnected graphs (testDisconnectedGraph), graphs with 

identical, negative, or zero edge weights 

(testGraphWithIdenticalWeights, testGraphWithNegativeWeights, 

testGraphWithZeroWeights), and graphs with multiple edges 

between nodes (testMultipleEdgesWithVaryingWeights). This 

demonstrates the heuristic's functionality and adaptability to 

various unique problem instances. 

Overall, the unit tests demonstrate Lin-Kernighan’s ability to offer 

a practical and efficient solution for the Traveling Salesman 

Problem. Its ability to find high-quality solutions in a fraction of 

the time required by exact methods, combined with its versatility 

in handling various graph structures, proves its value as a tool for 

real-world applications. 

5 REFLECTION 
For this project, I focused on implementing and analyzing the 

performance of the Lin-Kernighan heuristic and Bellman-Held-

Karp algorithm on different graph structures and in comparison to 

one another. I found the Lin-Kernighan algorithm particularly 

interesting because of its iterative nature and how it attempts to 

improve upon an initial solution by exploring local optimal 

solutions. This ties into class discussions about NP-completeness 

and time complexity vs. efficiency tradeoffs. 

One of the challenges I faced while designing the Lin-Kernighan 

algorithm was optimizing the recursive k-opt approach. The 

complexity of the algorithm increases due to the multiple layers of 

recursion needed to explore different tour improvements. 

Ensuring that the recursion depth was both effective and efficient 

required extensive thought, as excessive recursion could quickly 

lead to performance deterioration.  

Another challenge was Balancing the exploration of potential 

edge swaps with the depth limits was crucial for preventing over-

exploration while still achieving meaningful improvements. 



Additionally, caching edge weights for efficiency and managing 

the multiple restarts of the algorithm presented challenges in 

maintaining the best tour across iterations, especially when new 

tours were generated through randomization. The difficulty of 

fine-tuning parameters, such as the maximum recursion depth, 

candidate edge selection, and stopping conditions, added 

challenges to the design process, and reinforced the importance of 

carefully considering the trade-offs between exploration and 

performance for the Lin Kernighan Algorithm. 

If I had more time, I would experiment with optimizing the 

algorithm further by parallelizing its steps to improve efficiency 

for larger datasets. I would also test it on a broader range of 

problem instances and explore utilizing machine learning 

techniques to predict better edge swaps [6]. Additionally, I would 

fine-tune parameters and implement more advanced visualizations 

to track the algorithm’s progress and identify areas for further 

improvement. 

6 RESOURCES 
This project relied on foundational research and contemporary 

innovations to develop and analyze algorithms for solving the 

Traveling Salesman Problem (TSP). Lin and Kernighan's 1973 

paper [1] introduced the Lin-Kernighan heuristic, which served as 

the theoretical foundation for the algorithm’s design. The edge-

swapping approach detailed in the paper directly influenced the 

algorithm's implementation. Idzenga’s 2023 comparative study [2] 

provided valuable insights into the performance of various TSP 

algorithms, guiding the evaluation phase, and enabling a thorough 

comparison with an already established TSP algorithm. 

Helsgaun’s documentation [3] offered practical guidance for 

implementing my Lin-Kernighan heuristic, focusing on 

optimization techniques and common pitfalls, which were 

beneficial during testing and debugging. Additionally, Yang’s 

IEEE publication [4] introduced deep reinforcement learning 

methods for TSP, offering a broader perspective on how AI-

driven approaches compare to traditional heuristics. While this 

source did not directly inform my work, it provided me with a 

greater appreciation for the potential of machine learning 

techniques in solving TSP and expanded my understanding of 

alternative approaches to the problem. These resources 

collectively informed the development, implementation, and 

evaluation of the TSP algorithm.  

Hutchinson et al. (2016) [5] and Nguyen [6] provided 

comprehensive overviews of the Bellman-Held-Karp algorithm, 

detailing its theoretical basis, implementation, and limitations. 

These resources were helpful in understanding the computational 

constraints of the Bellman-Held-Karp approach, particularly when 

evaluating its performance on sparse graphs. 
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